<label id="xi47v"><meter id="xi47v"></meter></label>
       
      Scientists suggest a new tactic for starving tumors
                       Source: Xinhua | 2018-06-26 03:31:23 | Editor: huaxia

      In this tumor, imaged in a mouse model of breast cancer, oxygen-low areas appear in green. These regions tend to resist standard cancer treatments. (Credit: Laboratory of Metabolic Regulation and Genetics at The Rockefeller University)

      WASHINGTON, June 25 (Xinhua) -- American researchers found a potential new tactic against cancer: starving tumors by depriving them of a crucial protein they must utilize.

      A study published on Monday in the journal Nature Cell Biology revealed that some ever-dividing tumor cells struggled to make enough aspartate with limited oxygen supply, possibly lending a target for cancer treatment.

      Scientists from the Rockefeller University already knew that when certain tumors had outgrown their blood supply, they grew slowly under low-oxygen conditions. The oxygen molecule would participate in a vast number of a cell's chemical reactions, any of which could be limiting its growth.

      They mimicked oxygen deprivation in cancer cells harvested from 28 patients, including cancers from blood, stomach, breast, colon and lung, which they cultured in the lab.

      Many of these cells exhibited stunted growth under low-oxygen-like conditions. In the sensitive cells, a lack of aspartate would affect not only the production of new proteins, but also several other processes that rely on aspartate, such as the synthesis of genetic material, according to the study.

      However, there's other tumors that were less sensitive, and some weren't bothered at all by the treatment.

      In comparing these cells' production of chemicals, or metabolites, Javier Garcia-Bermudez, a postdoctoral associate at the university, noticed that the most sensitive ones lost the amino acid aspartate under oxygen deprivation.

      Cells can't make aspartate without oxygen, but it seemed as if the resistant cells were able to obtain it from their environment, according to Garcia-Bermudez.

      The researchers found there was something special about many of the cancers that resisted oxygen deprivation: they turned on a gene called SLC1A3 to suck up aspartate from their surroundings.

      When Garcia-Bermudez turned on this gene in the lab-grown cancers that were normally sensitive to low oxygen, they grew faster.

      The discovery might offer opportunities for creating drugs to stab cancers in this particular Achilles' heel, making them even hungrier for aspartate.

      There might be several ways to prevent cancer cells from getting aspartate by blocking their methods to make the amino acid or take it up from their surroundings, according to the researchers.

      If they are right, an anti-aspartate treatment might one day provide a supplement to typical chemotherapy and radiation, and it could potentially be effective for any type of tumor containing oxygen-starved areas.

      Kivanc Birsoy, head of the Laboratory of Metabolic Regulation and Genetics at the university, envisioned a sort of one-two punch: One treatment for the parts of a tumor that are well-supplied with oxygen, and an aspartate blocker for the rest.

      That sort of drug combination is still a long ways off, however. Birsoy now planned to investigate possible drugs that would interfere with aspartate production in the lab.

      Back to Top Close
      Xinhuanet

      Scientists suggest a new tactic for starving tumors

      Source: Xinhua 2018-06-26 03:31:23

      In this tumor, imaged in a mouse model of breast cancer, oxygen-low areas appear in green. These regions tend to resist standard cancer treatments. (Credit: Laboratory of Metabolic Regulation and Genetics at The Rockefeller University)

      WASHINGTON, June 25 (Xinhua) -- American researchers found a potential new tactic against cancer: starving tumors by depriving them of a crucial protein they must utilize.

      A study published on Monday in the journal Nature Cell Biology revealed that some ever-dividing tumor cells struggled to make enough aspartate with limited oxygen supply, possibly lending a target for cancer treatment.

      Scientists from the Rockefeller University already knew that when certain tumors had outgrown their blood supply, they grew slowly under low-oxygen conditions. The oxygen molecule would participate in a vast number of a cell's chemical reactions, any of which could be limiting its growth.

      They mimicked oxygen deprivation in cancer cells harvested from 28 patients, including cancers from blood, stomach, breast, colon and lung, which they cultured in the lab.

      Many of these cells exhibited stunted growth under low-oxygen-like conditions. In the sensitive cells, a lack of aspartate would affect not only the production of new proteins, but also several other processes that rely on aspartate, such as the synthesis of genetic material, according to the study.

      However, there's other tumors that were less sensitive, and some weren't bothered at all by the treatment.

      In comparing these cells' production of chemicals, or metabolites, Javier Garcia-Bermudez, a postdoctoral associate at the university, noticed that the most sensitive ones lost the amino acid aspartate under oxygen deprivation.

      Cells can't make aspartate without oxygen, but it seemed as if the resistant cells were able to obtain it from their environment, according to Garcia-Bermudez.

      The researchers found there was something special about many of the cancers that resisted oxygen deprivation: they turned on a gene called SLC1A3 to suck up aspartate from their surroundings.

      When Garcia-Bermudez turned on this gene in the lab-grown cancers that were normally sensitive to low oxygen, they grew faster.

      The discovery might offer opportunities for creating drugs to stab cancers in this particular Achilles' heel, making them even hungrier for aspartate.

      There might be several ways to prevent cancer cells from getting aspartate by blocking their methods to make the amino acid or take it up from their surroundings, according to the researchers.

      If they are right, an anti-aspartate treatment might one day provide a supplement to typical chemotherapy and radiation, and it could potentially be effective for any type of tumor containing oxygen-starved areas.

      Kivanc Birsoy, head of the Laboratory of Metabolic Regulation and Genetics at the university, envisioned a sort of one-two punch: One treatment for the parts of a tumor that are well-supplied with oxygen, and an aspartate blocker for the rest.

      That sort of drug combination is still a long ways off, however. Birsoy now planned to investigate possible drugs that would interfere with aspartate production in the lab.

      010020070750000000000000011105091372803221
      主站蜘蛛池模板: 无码国产精品一区二区免费vr | 亚洲欧洲日产国码无码网站| 亚洲电影在线免费观看| 国产精品免费久久久久电影网| 亚洲国产激情在线一区| 亚洲AV人无码综合在线观看 | 黄色免费网站在线看| 亚洲国产成AV人天堂无码| 亚洲一区二区三区偷拍女厕| 国产裸模视频免费区无码| 性xxxxx免费视频播放| 国产成人精品一区二区三区免费| 四虎成人精品国产永久免费无码| 亚洲欧美第一成人网站7777| 亚洲免费观看网站| 亚洲日本va午夜中文字幕一区| 亚洲国产日韩在线视频| 亚洲精品无码激情AV| 国产美女精品视频免费观看| 成人免费在线视频| 色妞WWW精品免费视频| 18禁免费无码无遮挡不卡网站| 午夜精品射精入后重之免费观看 | 久久亚洲精品中文字幕三区| 亚洲视频一区二区| 亚洲国产一成久久精品国产成人综合| 精品国产麻豆免费网站| 最近中文字幕免费mv视频7| AA免费观看的1000部电影| 国产精品色拉拉免费看| 国产人成免费视频网站| 69av免费视频| 午夜宅男在线永久免费观看网| 91精品免费在线观看| 91在线视频免费看| 无码精品A∨在线观看免费| 久久久久久精品免费看SSS| 成人在线免费看片| 成年女人免费v片| 超pen个人视频国产免费观看| 麻豆国产入口在线观看免费|