<label id="xi47v"><meter id="xi47v"></meter></label>
       
      Scientists trace ice sheets in history of West, East Antarctica
                       Source: Xinhua | 2018-06-15 00:07:52 | Editor: huaxia

      Photo taken on Dec. 9, 2017 shows a penguin at Inexpressible Island in Terra Nova Bay of the Ross Sea in Antarctica. (Xinhua/Bai Guolong)

      WASHINGTON, June 13 (Xinhua) -- Two studies published on Wednesday in the journal Nature revealed that starting from about 15,000 years ago, the ice sheet in West Antarctica partially melted and shrunk to a size even smaller than today. But instead of collapsing, it began to regrow later.

      However, much of East Antarctica remained frozen during at least the past 5 million years.

      The new findings could not be considered an antidote to today's fast global ice contractions but could help refine predictions about how today's warming climate will impact polar ice and sea level rise, according to the studies.

      Researchers led by Northern Illinois University geology professor Reed Scherer, Jonathan Kingslake from Columbia University in the United States and Torsten Albrecht of the Potsdam Institute for Climate Impact Research in Germany found that the ice sheet below sea level partially melted between roughly 14,500 and 9,000 years ago and shrunk to a size even smaller than today, but it did not collapse.

      Over the subsequent millennia, the loss of the massive amount of ice spurred uplift in the sea floor, a process known as isostatic rebound. Then the ice sheet began to regrow toward today's configuration, according to the study.

      "It retreated inland by more than 1,000 kilometers in a period of 1,000 years in this region," said Albrecht. "Instead of total collapse, the ice-sheet grew again by up to 400 kilometers. This is an amazing self-induced stabilization."

      However, given the speed of current climate change, the mechanism does not work fast enough to save today's ice sheets from melting and causing seas to rise, according to Albrecht.

      "What happened roughly 10,000 years ago might not dictate where we're going in our carbon dioxide-enhanced world, where the oceans are rapidly warming in the Polar Regions," said Scherer.

      "If the ice sheet were to dramatically retreat now, triggered by anthropogenic warming, the uplift process won't help regrow the ice sheet until long after coastal cities have felt the effects of the sea level rise," said Scherer.

      In addition, the ice modeling did not find grounding-line retreat and rebound-driven re-advance in the Amundsen Sea region, where present-day grounding-line retreat is causing concern about future runaway collapse.

      "So what's happening today in that sector is troublesome and could be a wildcard in all this," said Scherer.

      In another paper, a team of researchers has found that the land-based sectors of East Antarctic ice sheet did not retreat significantly over land during approximately 5.3 to 2.6 million years ago, when atmospheric carbon dioxide concentrations were similar to today's levels.

      Much of the East Antarctic ice sheet is land-based. Coastal regions and floating sheets of ice permanently attached to a landmass, known as ice shelves, are marine-based. The ice shelves are more sensitive to warming temperatures.

      "Based on this evidence from the Pliocene, today's current carbon dioxide levels are not enough to destabilize the land-based ice on the Antarctic continent," said Jeremy Shakun, lead author of this paper and assistant professor of earth and environmental science at U.S. Boston College.

      The researchers measured isotopes produced by the interaction between cosmic rays and the nucleus of an atom, called cosmogenic nuclides, in glacial sediment from Antarctic's largest ice shelf.

      If the sediment contained significant concentrations of these nuclides, researchers would know the region wasn't covered in ice because it had been in contact with cosmic rays.

      "The concentration of beryylium-10 and aluminum-26 in these sediments is profoundly low. They show no indication of being exposed to cosmic rays," said Marc Caffee, a co-author of the paper and professor of physics at Purdue University in the United States.

      Likewise, the fact that some ice on the southern continent was stable in a warming climate does not signal that Antarctica can somehow backstop the impact of climate change, they cautioned.

      "Marine-based ice very well could and in fact is already starting to contribute, and that alone holds an estimated 20 meters of sea level rise. We're saying that the terrestrial segment is more resilient at current carbon dioxide levels," said Shakun.

      Back to Top Close
      Xinhuanet

      Scientists trace ice sheets in history of West, East Antarctica

      Source: Xinhua 2018-06-15 00:07:52

      Photo taken on Dec. 9, 2017 shows a penguin at Inexpressible Island in Terra Nova Bay of the Ross Sea in Antarctica. (Xinhua/Bai Guolong)

      WASHINGTON, June 13 (Xinhua) -- Two studies published on Wednesday in the journal Nature revealed that starting from about 15,000 years ago, the ice sheet in West Antarctica partially melted and shrunk to a size even smaller than today. But instead of collapsing, it began to regrow later.

      However, much of East Antarctica remained frozen during at least the past 5 million years.

      The new findings could not be considered an antidote to today's fast global ice contractions but could help refine predictions about how today's warming climate will impact polar ice and sea level rise, according to the studies.

      Researchers led by Northern Illinois University geology professor Reed Scherer, Jonathan Kingslake from Columbia University in the United States and Torsten Albrecht of the Potsdam Institute for Climate Impact Research in Germany found that the ice sheet below sea level partially melted between roughly 14,500 and 9,000 years ago and shrunk to a size even smaller than today, but it did not collapse.

      Over the subsequent millennia, the loss of the massive amount of ice spurred uplift in the sea floor, a process known as isostatic rebound. Then the ice sheet began to regrow toward today's configuration, according to the study.

      "It retreated inland by more than 1,000 kilometers in a period of 1,000 years in this region," said Albrecht. "Instead of total collapse, the ice-sheet grew again by up to 400 kilometers. This is an amazing self-induced stabilization."

      However, given the speed of current climate change, the mechanism does not work fast enough to save today's ice sheets from melting and causing seas to rise, according to Albrecht.

      "What happened roughly 10,000 years ago might not dictate where we're going in our carbon dioxide-enhanced world, where the oceans are rapidly warming in the Polar Regions," said Scherer.

      "If the ice sheet were to dramatically retreat now, triggered by anthropogenic warming, the uplift process won't help regrow the ice sheet until long after coastal cities have felt the effects of the sea level rise," said Scherer.

      In addition, the ice modeling did not find grounding-line retreat and rebound-driven re-advance in the Amundsen Sea region, where present-day grounding-line retreat is causing concern about future runaway collapse.

      "So what's happening today in that sector is troublesome and could be a wildcard in all this," said Scherer.

      In another paper, a team of researchers has found that the land-based sectors of East Antarctic ice sheet did not retreat significantly over land during approximately 5.3 to 2.6 million years ago, when atmospheric carbon dioxide concentrations were similar to today's levels.

      Much of the East Antarctic ice sheet is land-based. Coastal regions and floating sheets of ice permanently attached to a landmass, known as ice shelves, are marine-based. The ice shelves are more sensitive to warming temperatures.

      "Based on this evidence from the Pliocene, today's current carbon dioxide levels are not enough to destabilize the land-based ice on the Antarctic continent," said Jeremy Shakun, lead author of this paper and assistant professor of earth and environmental science at U.S. Boston College.

      The researchers measured isotopes produced by the interaction between cosmic rays and the nucleus of an atom, called cosmogenic nuclides, in glacial sediment from Antarctic's largest ice shelf.

      If the sediment contained significant concentrations of these nuclides, researchers would know the region wasn't covered in ice because it had been in contact with cosmic rays.

      "The concentration of beryylium-10 and aluminum-26 in these sediments is profoundly low. They show no indication of being exposed to cosmic rays," said Marc Caffee, a co-author of the paper and professor of physics at Purdue University in the United States.

      Likewise, the fact that some ice on the southern continent was stable in a warming climate does not signal that Antarctica can somehow backstop the impact of climate change, they cautioned.

      "Marine-based ice very well could and in fact is already starting to contribute, and that alone holds an estimated 20 meters of sea level rise. We're saying that the terrestrial segment is more resilient at current carbon dioxide levels," said Shakun.

      010020070750000000000000011105091372542661
      主站蜘蛛池模板: 一个人免费观看在线视频www| 国产免费黄色无码视频| 特级无码毛片免费视频尤物| 亚洲人成色7777在线观看不卡| 337P日本欧洲亚洲大胆精品| 卡一卡二卡三在线入口免费| 国产成人精品日本亚洲网址| 好先生在线观看免费播放| 亚洲va成无码人在线观看| 国产福利在线免费| 亚洲午夜福利在线视频| 永久中文字幕免费视频网站| 国产产在线精品亚洲AAVV| 亚洲福利精品电影在线观看| 一级做a爰片久久毛片免费看| 亚洲欧洲一区二区三区| 最近中文字幕免费大全| 久久91亚洲精品中文字幕| 最近中文字幕电影大全免费版 | 哒哒哒免费视频观看在线www| 精品久久久久亚洲| 美腿丝袜亚洲综合| 嫩草成人永久免费观看| 亚洲国产成AV人天堂无码| 成人a免费α片在线视频网站| 看Aⅴ免费毛片手机播放| 亚洲真人日本在线| 91精品国产免费| 亚洲一卡2卡3卡4卡乱码 在线 | 亚洲色欲久久久综合网东京热| 久久青青草原国产精品免费| 亚洲黄色在线观看| 国产无遮挡色视频免费视频| 黄视频在线观看免费| 精品亚洲麻豆1区2区3区| 国产精品无码一区二区三区免费 | 日本免费观看网站| 好男人资源在线WWW免费| 亚洲高清无在码在线无弹窗| 黄网址在线永久免费观看 | 亚洲综合无码一区二区|