"/>

      <label id="xi47v"><meter id="xi47v"></meter></label>

      Scientists teach computers to recognize cells, using AI

      Source: Xinhua    2018-04-13 00:14:10

      WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

      A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

      It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

      The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

      Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

      They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

      "This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

      The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

      It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

      Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

      The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

      They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

      "The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

      "This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

      "This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

      Editor: yan
      Related News
      Xinhuanet

      Scientists teach computers to recognize cells, using AI

      Source: Xinhua 2018-04-13 00:14:10

      WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

      A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

      It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

      The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

      Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

      They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

      "This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

      The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

      It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

      Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

      The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

      They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

      "The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

      "This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

      "This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

      [Editor: huaxia]
      010020070750000000000000011105521371069391
      主站蜘蛛池模板: 国产成人aaa在线视频免费观看| 污视频在线观看免费| 免费毛片在线播放| 亚洲性无码av在线| 57pao国产成永久免费视频| 69天堂人成无码麻豆免费视频| 亚洲国产婷婷六月丁香| a色毛片免费视频| 午夜私人影院免费体验区| 亚洲自偷自偷在线成人网站传媒| 国产在线观看麻豆91精品免费| 亚洲最大在线视频| 无码视频免费一区二三区| 亚洲小说图区综合在线| 国产免费怕怕免费视频观看| 羞羞视频免费网站入口| 亚洲精品国产日韩无码AV永久免费网| 午夜在线亚洲男人午在线| 国产精品亚洲产品一区二区三区| 无码人妻一区二区三区免费视频 | 亚洲免费观看网站| 亚洲国产精品综合久久网各| 久久午夜免费视频| 亚洲AV无码男人的天堂| 亚洲精品乱码久久久久久蜜桃| 中文字幕免费人成乱码中国| 亚洲精品天天影视综合网| 欧美好看的免费电影在线观看| 亚洲丰满熟女一区二区哦| 亚洲一级特黄大片无码毛片| 日本在线免费观看| 亚洲人成人网毛片在线播放| 日批日出水久久亚洲精品tv| 亚欧日韩毛片在线看免费网站| 亚洲中文字幕人成乱码| 免费中文字幕在线| 无码人妻一区二区三区免费n鬼沢 无码人妻一区二区三区免费看 | 亚洲第一成年网站视频| 久久综合亚洲色HEZYO国产| 9277手机在线视频观看免费| 亚洲精品欧美综合四区|