"/>

      <label id="xi47v"><meter id="xi47v"></meter></label>

      Scientists find two genes in lung cell used by flu to infect hosts

      Source: Xinhua    2018-04-11 00:17:37

      WASHINGTON, April 10 (Xinhua) -- American researchers have developed a genetic screening tool that identified two key factors that allow the influenza virus to infect human lung cells.

      The study, published on Tuesday in the journal Cell Reports, revealed a technique that can create a library of modified cells, each missing a different gene, allowing scientists to see which changes impact their response to flu. This in turn could identify potential targets for antiviral drugs.

      "Our current treatments for flu are limited. Vaccines have variable efficacy, and the virus has a propensity to mutate so that antiviral drugs don't work as well," said Julianna Han, a graduate student in microbiology at the University of Chicago and lead author of the study.

      "The next wave of antiviral treatments will be in part directed toward the host, so our work helps us get a better understanding of what proteins and pathways are utilized by the influenza virus."

      Han and Balaji Manicassamy, assistant professor of microbiology and the senior author of the study, used CRISPR/Cas9 gene editing tools that allow scientists to selectively knock out, or turn off, specific genes.

      They created a library of modified human epithelial lung cells, the cells that line the airways and are the first to be infected by the flu virus. Each cell was missing a different gene, creating nearly 19,000 different genetic variations of the cell.

      The researchers then exposed the cells to the H5N1 flu strain, a type of influenza A virus commonly known as the bird flu.

      They supposed that if the virus was able to infect and kill one of the host cells, that means the gene and the proteins it produces didn't play a role in the virus' ability to replicate.

      If the cell survived, that means its modified genome somehow made it resistant to the virus, it was now missing a pathway that the virus relied on to replicate and do its dirty work.

      After five rounds of exposing the cells to the H5N1 virus, the researchers were left with a set of cells that were pretty resistant to the flu. When they examined what these hardy survivors had in common, two genes stood out.

      One, SLC35A1, encodes a protein that helps create a receptor for the flu on the surface of the cell.

      The second gene, CIC, is a negative regulator of the innate immune system, meaning it helps shut down the cell's default immune response to foreign invaders.

      When CIC is turned off, other genes that produce antiviral and inflammatory responses are allowed to fire up and fight off the virus, which is why the test cells missing it were resistant to the flu.

      But researchers said one couldn't just knock out a gene like CIC permanently as a means to fight the flu. The body needs mechanisms to shut off the immune system once an infection is gone. If not, it could go into overdrive and damage the body's own cells, which is what happens in autoimmune disorders.

      On the other hand, certain cancers can exploit a negative regulator like CIC to suppress immune responses while tumor cells run rampant.

      Once identifying the two key genes involved in H5N1 response, they exposed the cells to other pathogens to spot any more commonalities.

      CIC was also important for all strains of flu and several RNA viruses, or viruses containing RNA genomes. These included respiratory and non-respiratory viruses, highlighting CICs broad effect.

      Editor: yan
      Related News
      Xinhuanet

      Scientists find two genes in lung cell used by flu to infect hosts

      Source: Xinhua 2018-04-11 00:17:37

      WASHINGTON, April 10 (Xinhua) -- American researchers have developed a genetic screening tool that identified two key factors that allow the influenza virus to infect human lung cells.

      The study, published on Tuesday in the journal Cell Reports, revealed a technique that can create a library of modified cells, each missing a different gene, allowing scientists to see which changes impact their response to flu. This in turn could identify potential targets for antiviral drugs.

      "Our current treatments for flu are limited. Vaccines have variable efficacy, and the virus has a propensity to mutate so that antiviral drugs don't work as well," said Julianna Han, a graduate student in microbiology at the University of Chicago and lead author of the study.

      "The next wave of antiviral treatments will be in part directed toward the host, so our work helps us get a better understanding of what proteins and pathways are utilized by the influenza virus."

      Han and Balaji Manicassamy, assistant professor of microbiology and the senior author of the study, used CRISPR/Cas9 gene editing tools that allow scientists to selectively knock out, or turn off, specific genes.

      They created a library of modified human epithelial lung cells, the cells that line the airways and are the first to be infected by the flu virus. Each cell was missing a different gene, creating nearly 19,000 different genetic variations of the cell.

      The researchers then exposed the cells to the H5N1 flu strain, a type of influenza A virus commonly known as the bird flu.

      They supposed that if the virus was able to infect and kill one of the host cells, that means the gene and the proteins it produces didn't play a role in the virus' ability to replicate.

      If the cell survived, that means its modified genome somehow made it resistant to the virus, it was now missing a pathway that the virus relied on to replicate and do its dirty work.

      After five rounds of exposing the cells to the H5N1 virus, the researchers were left with a set of cells that were pretty resistant to the flu. When they examined what these hardy survivors had in common, two genes stood out.

      One, SLC35A1, encodes a protein that helps create a receptor for the flu on the surface of the cell.

      The second gene, CIC, is a negative regulator of the innate immune system, meaning it helps shut down the cell's default immune response to foreign invaders.

      When CIC is turned off, other genes that produce antiviral and inflammatory responses are allowed to fire up and fight off the virus, which is why the test cells missing it were resistant to the flu.

      But researchers said one couldn't just knock out a gene like CIC permanently as a means to fight the flu. The body needs mechanisms to shut off the immune system once an infection is gone. If not, it could go into overdrive and damage the body's own cells, which is what happens in autoimmune disorders.

      On the other hand, certain cancers can exploit a negative regulator like CIC to suppress immune responses while tumor cells run rampant.

      Once identifying the two key genes involved in H5N1 response, they exposed the cells to other pathogens to spot any more commonalities.

      CIC was also important for all strains of flu and several RNA viruses, or viruses containing RNA genomes. These included respiratory and non-respiratory viruses, highlighting CICs broad effect.

      [Editor: huaxia]
      010020070750000000000000011105521371011651
      主站蜘蛛池模板: 亚洲人成在线播放网站岛国| 国产成人精品免费直播| 国产精品亚洲片在线观看不卡| 激情小说亚洲色图| 国产精品国产午夜免费福利看 | 亚洲女久久久噜噜噜熟女| 色屁屁www影院免费观看视频| 国产极品粉嫩泬免费观看| 豆国产96在线|亚洲| 国产又黄又爽又刺激的免费网址| 欧美亚洲国产SUV| 亚洲国产一区明星换脸| 污污污视频在线免费观看| 中文字幕亚洲综合久久菠萝蜜| 一区二区三区精品高清视频免费在线播放 | 久久久久久国产a免费观看黄色大片 | 草久免费在线观看网站| 亚洲毛片av日韩av无码| 中文在线免费不卡视频| 亚洲图片一区二区| 永久免费AV无码国产网站| 亚洲AV噜噜一区二区三区| 亚洲国产精品成人久久蜜臀 | mm1313亚洲国产精品美女| 永久免费av无码不卡在线观看| 国产在线播放线91免费| 国产精品亚洲综合网站| 久久亚洲AV无码精品色午夜| 久久水蜜桃亚洲av无码精品麻豆| 无码乱人伦一区二区亚洲| 久久夜色精品国产噜噜噜亚洲AV | 日韩免费的视频在线观看香蕉| 国产在线观看无码免费视频| 性无码免费一区二区三区在线| 久久99热精品免费观看动漫| 成人免费毛片内射美女-百度| 国产一精品一AV一免费孕妇| 亚洲国产精品自产在线播放| 亚洲无砖砖区免费| 美景之屋4在线未删减免费 | 亚洲AV综合色区无码一区|