<label id="xi47v"><meter id="xi47v"></meter></label>
       
      Astronomers capture most distant star ever seen
                       Source: Xinhua | 2018-04-03 03:23:41 | Editor: huaxia

      Icarus, whose official name is MACS J1149+2223 Lensed Star 1, is the farthest individual star ever seen. It is only visible because it is being magnified by the gravity of a massive galaxy cluster, located about 5 billion light-years from Earth. Called MACS J1149+2223, this cluster, shown at left, sits between Earth and the galaxy that contains the distant star. The panels at the right show the view in 2011, without Icarus visible, compared with the star's brightening in 2016. (Credit: NASA, ESA, and P. Kelly)

      WASHINGTON, April 2 (Xinhua) -- American astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth, thanks to a rare cosmic alignment.

      The study, published on Monday online in the journal Nature Astronomy, revealed the discovery of a star called Icarus, magnified by gravitational lensing by over 2,000 times.

      Astronomers routinely study galaxies much farther away, visible because they glow with the brightness of billions of stars. They also managed to study supernova, often brighter than the galaxy in which it sits.

      However, for a distance of about 100 million light years, the stars in these galaxies are impossible to make out individually.

      But a phenomenon called gravitational lensing, the bending of light by massive galaxy clusters in the line of sight, can magnify the distant universe and make dim, far away objects visible.

      The single star was discovered in NASA Hubble Space Telescope images taken in late April of 2016 and as recently as April 2017.

      "You can see individual galaxies out there, but this star is at least 100 times farther away than the next individual star we can study, except for supernova explosions," said Patrick Kelly at the University of Minnesota, Twin Cities, the paper's first author.

      These observations can provide a rare look at how stars evolve, especially the most luminous ones.

      "For the first time ever we're seeing an individual normal star - not a supernova, not a gamma ray burst, but a single stable star - at a distance of nine billion light years," said Alex Filippenko, a professor of astronomy at UC Berkeley and one of many co-authors of the report.

      The B-type star Icarus is much larger, more massive, hotter and possibly hundreds of thousands of times intrinsically brighter than our Sun.

      According to the researchers, an extended lens, like a galaxy cluster, can only magnify a background object up to 50 times, but smaller objects can magnify much more.

      A single star in a foreground lens, if precisely aligned with a background star, can magnify the background star thousands of times.

      In this case, a star about the size of our sun briefly passed directly through the line of sight between the distant star Icarus and Hubble, boosting its brightness significantly.

      Also, if the alignment was perfect, that single star within the cluster turned the light from the distant star into an "Einstein ring": a halo of light created when light from the distant star bends around all sides of the lensing star.

      The ring is too small to discern from this distance, but the effect made the star easily visible by magnifying its apparent brightness.

      The astronomers predict that Icarus will be magnified many times over the next decade as cluster stars move around, perhaps increasing its brightness as much as 10,000 times.

      Back to Top Close
      Xinhuanet

      Astronomers capture most distant star ever seen

      Source: Xinhua 2018-04-03 03:23:41

      Icarus, whose official name is MACS J1149+2223 Lensed Star 1, is the farthest individual star ever seen. It is only visible because it is being magnified by the gravity of a massive galaxy cluster, located about 5 billion light-years from Earth. Called MACS J1149+2223, this cluster, shown at left, sits between Earth and the galaxy that contains the distant star. The panels at the right show the view in 2011, without Icarus visible, compared with the star's brightening in 2016. (Credit: NASA, ESA, and P. Kelly)

      WASHINGTON, April 2 (Xinhua) -- American astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth, thanks to a rare cosmic alignment.

      The study, published on Monday online in the journal Nature Astronomy, revealed the discovery of a star called Icarus, magnified by gravitational lensing by over 2,000 times.

      Astronomers routinely study galaxies much farther away, visible because they glow with the brightness of billions of stars. They also managed to study supernova, often brighter than the galaxy in which it sits.

      However, for a distance of about 100 million light years, the stars in these galaxies are impossible to make out individually.

      But a phenomenon called gravitational lensing, the bending of light by massive galaxy clusters in the line of sight, can magnify the distant universe and make dim, far away objects visible.

      The single star was discovered in NASA Hubble Space Telescope images taken in late April of 2016 and as recently as April 2017.

      "You can see individual galaxies out there, but this star is at least 100 times farther away than the next individual star we can study, except for supernova explosions," said Patrick Kelly at the University of Minnesota, Twin Cities, the paper's first author.

      These observations can provide a rare look at how stars evolve, especially the most luminous ones.

      "For the first time ever we're seeing an individual normal star - not a supernova, not a gamma ray burst, but a single stable star - at a distance of nine billion light years," said Alex Filippenko, a professor of astronomy at UC Berkeley and one of many co-authors of the report.

      The B-type star Icarus is much larger, more massive, hotter and possibly hundreds of thousands of times intrinsically brighter than our Sun.

      According to the researchers, an extended lens, like a galaxy cluster, can only magnify a background object up to 50 times, but smaller objects can magnify much more.

      A single star in a foreground lens, if precisely aligned with a background star, can magnify the background star thousands of times.

      In this case, a star about the size of our sun briefly passed directly through the line of sight between the distant star Icarus and Hubble, boosting its brightness significantly.

      Also, if the alignment was perfect, that single star within the cluster turned the light from the distant star into an "Einstein ring": a halo of light created when light from the distant star bends around all sides of the lensing star.

      The ring is too small to discern from this distance, but the effect made the star easily visible by magnifying its apparent brightness.

      The astronomers predict that Icarus will be magnified many times over the next decade as cluster stars move around, perhaps increasing its brightness as much as 10,000 times.

      010020070750000000000000011105091370836751
      主站蜘蛛池模板: 亚洲国产精品综合一区在线| 久久亚洲国产成人精品无码区| 成人片黄网站色大片免费观看cn| 日韩成人免费在线| 亚洲精华液一二三产区| 永久黄网站色视频免费直播| 国产AV无码专区亚洲AV漫画 | 亚洲精品视频在线看| 国产亚洲人成网站在线观看不卡| www在线观看播放免费视频日本| 69xx免费观看视频| 激情综合亚洲色婷婷五月APP| 牛牛在线精品观看免费正| 亚洲精品视频免费看| 久久久久久久亚洲精品| 成全视频在线观看免费| 亚洲第一区香蕉_国产a| 嫖丰满老熟妇AAAA片免费看| 亚洲午夜无码久久久久小说 | av大片在线无码免费| 中文字幕久久亚洲一区| 毛片在线播放免费观看| 亚洲国产a级视频| a高清免费毛片久久| 亚洲av色福利天堂| 在线观看无码AV网站永久免费| MM1313亚洲精品无码久久| 在线观看午夜亚洲一区| 亚洲免费网站在线观看| 亚洲av无码专区在线电影| 亚洲午夜未满十八勿入网站2| 久久国产免费一区| 欧洲 亚洲 国产图片综合| 国产四虎免费精品视频| 国产精品亚洲一区二区三区在线观看| 蜜桃视频在线观看免费网址入口| 亚洲AV日韩AV天堂一区二区三区| 国产大片线上免费观看| 久久精品无码专区免费| 亚洲乱码卡三乱码新区| 国产美女亚洲精品久久久综合|