"/>

      <label id="xi47v"><meter id="xi47v"></meter></label>

      Mars Reconnaissance Orbiter preparing to remain in service over next decade

      Source: Xinhua    2018-02-10 06:38:08

      LOS ANGELES, Feb. 9 (Xinhua) -- The U.S. National Aeronautics and Space Administration (NASA) plans to keep using the Mars Reconnaissance Orbiter (MRO) past the mid-2020s, the space agency said on Friday.

      "We are counting on Mars Reconnaissance Orbiter remaining in service for many more years," Michael Meyer, lead scientist of NASA's Mars Exploration Program at NASA's Washington headquarters, was quoted as saying in a statement. "It's not just the communications relay that MRO provides, as important as that is. It's also the science-instrument observations. Those help us understand potential landing sites before they are visited, and interpret how the findings on the surface relate to the planet as a whole."

      The spacecraft already has worked more than double its planned mission life since launch on August 12, 2005. It reached Mars and went into orbit on March 10, 2006. The mission's extended service provides data relay from assets on Red Planet's surface and observations with its science instruments, despite some degradation in capabilities.

      MRO is a critical element for NASA's Mars Program to support other missions for the long haul, so the mission team is finding ways to extend the spacecraft's longevity.

      There are many ways to achieve the goal, according to NASA's Jet Propulsion Laboratory (JPL), who partners with Lockheed Martin Space, Denver, in operating the spacecraft. One is increased reliance on a star tracker and less on aging gyroscopes. Another step is wringing more useful life from batteries.

      "In flight operations, our emphasis is on minimizing risk to the spacecraft while carrying out an ambitious scientific and programmatic plan," said MRO Project Manager Dan Johnston of JPL.

      At Mars, MRO's attitude changes almost continuously, with relation to the Sun and other stars, as it rotates once per orbit to keep its science instruments pointed downward at Mars.

      From the orbiter's 2005 launch until last year, it always used an inertial measurement unit, containing gyroscopes and accelerometers, for attitude control.

      Earlier this month, the spacecraft completed its final full-swapover test using only stellar navigation to sense and maintain its orientation, without gyroscopes or accelerometers. The project is evaluating the recent test and planning to shift indefinitely to this "all-stellar" mode in March.

      "In all-stellar mode, we can do normal science and normal relay," Johnston said. "The inertial measurement unit powers back on only when it's needed, such as during safe mode, orbital trim maneuvers, or communications coverage during critical events around a Mars landing."

      The batteries are recharged by the orbiter's two large solar arrays. To increase the battery's capacity and lifespan, the mission team now charges the batteries higher than before.

      The project is also planning to reduce the time the orbiter spends in Mars' shadow, when sunlight can't reach the solar arrays, currently for about 40 minutes of every two-hour orbit.

      By shifting the orbit to later in the afternoon, mission managers could reduce the amount of time the spacecraft spends in Mars' shadow each orbit.

      However, this option to prolong battery life would not be used until after MRO has supported new Mars mission landings in 2018 and 2021 by receiving transmissions during the landers' critical arrival events.

      MRO continues to orbit Mars over a full martian year and gather data with all six of the orbiter's science instruments, a decade after what was initially planned as a two-year science mission to be followed by a two-year relay mission.

      More than 1,200 scientific publications have been based on MRO observations, said NASA. Two instruments, the High Resolution Imaging Science Experiment (HiRISE) camera and the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) mineral-mapper, were named most often in research papers.

      Editor: Zhou Xin
      Related News
      Xinhuanet

      Mars Reconnaissance Orbiter preparing to remain in service over next decade

      Source: Xinhua 2018-02-10 06:38:08

      LOS ANGELES, Feb. 9 (Xinhua) -- The U.S. National Aeronautics and Space Administration (NASA) plans to keep using the Mars Reconnaissance Orbiter (MRO) past the mid-2020s, the space agency said on Friday.

      "We are counting on Mars Reconnaissance Orbiter remaining in service for many more years," Michael Meyer, lead scientist of NASA's Mars Exploration Program at NASA's Washington headquarters, was quoted as saying in a statement. "It's not just the communications relay that MRO provides, as important as that is. It's also the science-instrument observations. Those help us understand potential landing sites before they are visited, and interpret how the findings on the surface relate to the planet as a whole."

      The spacecraft already has worked more than double its planned mission life since launch on August 12, 2005. It reached Mars and went into orbit on March 10, 2006. The mission's extended service provides data relay from assets on Red Planet's surface and observations with its science instruments, despite some degradation in capabilities.

      MRO is a critical element for NASA's Mars Program to support other missions for the long haul, so the mission team is finding ways to extend the spacecraft's longevity.

      There are many ways to achieve the goal, according to NASA's Jet Propulsion Laboratory (JPL), who partners with Lockheed Martin Space, Denver, in operating the spacecraft. One is increased reliance on a star tracker and less on aging gyroscopes. Another step is wringing more useful life from batteries.

      "In flight operations, our emphasis is on minimizing risk to the spacecraft while carrying out an ambitious scientific and programmatic plan," said MRO Project Manager Dan Johnston of JPL.

      At Mars, MRO's attitude changes almost continuously, with relation to the Sun and other stars, as it rotates once per orbit to keep its science instruments pointed downward at Mars.

      From the orbiter's 2005 launch until last year, it always used an inertial measurement unit, containing gyroscopes and accelerometers, for attitude control.

      Earlier this month, the spacecraft completed its final full-swapover test using only stellar navigation to sense and maintain its orientation, without gyroscopes or accelerometers. The project is evaluating the recent test and planning to shift indefinitely to this "all-stellar" mode in March.

      "In all-stellar mode, we can do normal science and normal relay," Johnston said. "The inertial measurement unit powers back on only when it's needed, such as during safe mode, orbital trim maneuvers, or communications coverage during critical events around a Mars landing."

      The batteries are recharged by the orbiter's two large solar arrays. To increase the battery's capacity and lifespan, the mission team now charges the batteries higher than before.

      The project is also planning to reduce the time the orbiter spends in Mars' shadow, when sunlight can't reach the solar arrays, currently for about 40 minutes of every two-hour orbit.

      By shifting the orbit to later in the afternoon, mission managers could reduce the amount of time the spacecraft spends in Mars' shadow each orbit.

      However, this option to prolong battery life would not be used until after MRO has supported new Mars mission landings in 2018 and 2021 by receiving transmissions during the landers' critical arrival events.

      MRO continues to orbit Mars over a full martian year and gather data with all six of the orbiter's science instruments, a decade after what was initially planned as a two-year science mission to be followed by a two-year relay mission.

      More than 1,200 scientific publications have been based on MRO observations, said NASA. Two instruments, the High Resolution Imaging Science Experiment (HiRISE) camera and the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) mineral-mapper, were named most often in research papers.

      [Editor: huaxia]
      010020070750000000000000011100001369631951
      主站蜘蛛池模板: 亚洲国产综合精品中文第一| 亚洲成aⅴ人片久青草影院| 亚洲国产精品久久久久婷婷老年| 黄网站色视频免费观看45分钟 | 亚洲一级免费毛片| 亚洲AV无码成人网站久久精品大| 在线观看免费无码视频| 人人狠狠综合久久亚洲88| 国产一精品一AV一免费| 亚洲精品视频在线| 免费精品国偷自产在线在线| 亚洲国产亚洲片在线观看播放| 在线观看视频免费完整版| 亚洲精品无码专区在线播放| 国产三级电影免费观看| 国产精品极品美女自在线观看免费 | 青青草原1769久久免费播放 | 亚洲娇小性xxxx色| 永久免费毛片手机版在线看| 香港特级三A毛片免费观看| 亚洲中文久久精品无码| 99久久99热精品免费观看国产 | AV免费网址在线观看| 在线观看免费亚洲| 亚洲色精品aⅴ一区区三区| 无码人妻精品中文字幕免费| 亚洲mv国产精品mv日本mv| 国产成人精品免费视频软件| 久青草视频97国内免费影视| 亚洲国产成人久久综合一| 岛国av无码免费无禁网站| 九九免费久久这里有精品23 | 亚洲六月丁香婷婷综合| 免费h成人黄漫画嘿咻破解版| 99精品视频在线观看免费| 亚洲国产中文在线视频| www.91亚洲| 69天堂人成无码麻豆免费视频| 精品在线视频免费| 亚洲精品欧洲精品| 亚洲高清国产拍精品青青草原|